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SUMMARY 
The problem is considered of the indentation by a smooth rigid punch of a half-space composed of linear elastic 
material of hexagonal symmetry whose plane boundary is parallel to the basal planes. The case is considered in 
which the area of contact between the punch and the half-space is circular, the end of the punch with is in contact 
with the haft-space having.an arbitrary profile. An integral equation is formulated and solved for the boundary 
value of the normal displacement in the half-space, and an expression is derived for the distribution of pressure 
under the punch. 

1. Introduction 

We shall consider the indentation of an elastic medium of hexagonal symmetry by a punch 
of circular cross-section whose end-profile is of arbitrary shape. We shall suppose that the 
medium occupies a half-space, the boundary of which is a basal plane of the hexagonal 
structure. This boundary is assumed to be free of tractions except for the circular area over 
which there is contact between the punch and the medium. Taking axes in such a way that 
the medium occupies the region z > 0, we shall suppose that the area of contact is the circle 
z = 0, r < c, where (r, 0, z) form a system of cylindrical polar coordinates. 

We shall denote by ui(r, O, z) and aij(r, O, z) the physical components of displacement and 
stress throughout tile body. Then the appropriate boundary conditions satisfied on z = 0 
are as follows. 

a,z(r, 0, 0) = aoz(r, 0, 0) = 0 for all (r, 0), 

a~(r, 0, 0) = 0 for r > c, 

u~(r, O, O) = U(r, O) + U o for r < c, 

(1) 

where U(r, O) represents the end-profile of the punch, a given quantity, and U o is a constant 
determined by the depth of penetration. It is assumed that contact occurs between the punch 
and medium over the whole region r < c. 

The total indenting force on the punch is given by 
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P = t~zz(r, O, O)rdrdO. (2) 

We can assume either that P is specified and that the penetration depth U o is determined by 
the solution, or that U o is specified and the force P is determined by the solution. 

The analogous problem for an isotropic half-space has been investigated previously by 
Keer 1-1] and Guidera [2], the former using potential methods, the latter representing the 
problem in terms of an integral equation. Guidera also used his method to solve related 
problems in which the shear displacements ur(r , 0, 0) and uo(r, 0, 0) are specified over the 
contact region r < c instead of the shear tractions being zero there. The integral equation 
approach to contact problems is similar to that used by Guidera and Lardner 1-3] to solve 
the problem of an arbitrarily loaded penny-shaped crack in an isotropic medium. It has been 
pointed out in a note by Lardner and Tupholme [4] that, by virtue of certain results 
concerning the properties of dislocation loops in hexagonal crystals derived by Tupholme 
[5], the solutions for penny-shaped cracks in isotropic media can readily be extended to 
solve the analogous problems in hexagonal media. In the present paper we shall take 
advantage of this observation to solve the indentation problem for a hexagonal half-space 
by extension of Guidera's integral equation method. 

We should also point out that the axi-symmetric indentation problem for a transversely 
isotropic elastic layer has been solved using potential methods by England [6]. 

The integral equation method as applied to contact problems 1-7] consists essentially of 
replacing the given problem for the half-space by a new problem which concerns an infinite 
medium containing a Somigliana dislocation. The surface occupied by this dislocation is 
chosen to coincide with the plane boundary z = 0 of the original half-space, the components 
of the displacement discontinuity across this plane being denoted by Aui(r, 0). Since the 
plane z -- 0 is a plane of symmetry for the hexagonal medium, it is clear from symmetry 
considerations that in order for the Somigliana dislocation to provide the solution to the 
contact problem, the discontinuities of tangential displacement, Au, and Auo, must in fact 
be zero. Furthermore, the discontinuity in normal displacement is given by ZlUz(r, O ) -  
- uz(r, O, 0 + ) - uz(r,/9, 0 - )  = 2uz(r, O, 0 + ); i.e., is equal to twice the boundary values of the 
surface displacement for the contact problem. Consequently, Au z has a known value in the 
contact region, given by 

AUz(r, 0) = 2[U(r, 0) + Uo] (r < c). (3) 

The value of this component of displacement discontinuity in the outer region r > c must be 
determined from the integral equation which will be written down below. 

The stress components caused by an arbitrary Somigliana dislocation may be derived 
from the Somigliana formula [8]. When the dislocation lies on the plane surface z = 0 in an 
isotropic medium, simplified formulae have been derived [3] for the limiting values of 
certain of the stress components on the plane z = 0 itself. Now it has been shown by 
Tupholme [5] that for a dislocation lying in the basal plane of a hexagonal medium certain 
of the stress components on the plane of the dislocation can be derived from the 
corresponding stresses in an isotropic medium simply by making appropriate replacements 
of the elastic constants. Combining this observation therefore with the formulae derived in 
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[3] enables us to write down integral formulae for the stresses of a Somigliana dislocation in 
the basal plane of a hexagonal material [4]. 

For the present contact problem, we are interested in the stress component %~(r, 0, 0), and 
the appropriate integral formula for this quantity is as follows [3-5]. 

c2= f 

JoY  rW: 
+ 1  a 1 

7f Auz,o(r,O)~(-~)}rdrdO (4) 

where R 2 = r 2 + r '2 - 2rr' cos (0 - 0'). The constant ~/n is derived from the usual elastic 
constants (cpq) of the hexagonal medium in accordance with the following equations: 

r/, : (4n)- 1 Ke(C33/Cll)½, 

K,  = ( e l l  "q- C 1 3 ) { [ C 4 4 ( C l l  - -  C,3)]/[C33(Cll -}- C 1 3  "Jr" 2C44)]} }, 
Cll = (q  lC33)fl 

Combining the integral formula (4) with the boundary conditions (12) then gives that 

Jo  Auz'r(r'O) r(1) +I-F ' = (r' > c). (5) 

Bearing in mind that Auz(r, O) is determined from (3) for r < c, we see that (5) provides an 
integral equation for Auz(r, O) in the outer region r > c. This equation may be solved by a 
technique which is similar but not identical to that used [3] for the corresponding equation 
which arises in the penny-shaped crack problem. 

2. Solution of the problem 

The integral representation (4) in two variables may be reduced to a system of relationships 
in a single variable by expanding all the quantities involved in Fourier series in the angular 
variable 0. Thus. we write 

oo 
- 1  , r , r r rln az~(r,O,O)=½Po(r')+ E [P,(r')cosnO +Qn( )sinn0'], 

n = l  

(6) 

oo 

Au,(r, 0) = -~fo(r) + Z [_fn(r) cos nO + gn(r) sin nO], (7) 
n = l  

• oo 

R - 1  1 = Jo(r, r') + Z In(r, r') cos n(O - 0'). (8) 
n = l  

When the expansions (6)-(8) are substituted into equation (4) and the integrations over 0 
are performed, comparison of coefficients of cos nO' and sin nO' yields the integral repre- 
sentations 
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P . ( r ) = - =  r"+ - F -  : '  

Q.(r') = - re  r ~÷1 ~ L.(r, r')dr 

where 

L.(r, r') = r" 0 ~rr [r-"I.(r, r')]. 

J. T. Guidera, R. W. Lardner and G. E. Tupholme 

(n = 0, 1 , . . . ) ,  (9) 

(n = 1, 2 , . . . ) ,  (10) 

(11) 

It is clear that equation (10) may be obtained from (9) by replacing f .  and P.  by 9. and Q. 
respectively. 

Integral equations for the Fourier coefficients f.(r) and o.(r) in r > c are obtained from 
equations (9) and (10) by setting P.(r') = Q.(r') = 0 for r' > c (to fulfil equation (5)) and by 
noting that f.(r) and 9.(r) are specified for r < c. The solutions of the resulting equations 
follow from the discussion in the Appendix and are found to be 

:.(r,) = 2 r'-"tr'2- c2: - Ii n (c 2 -- r2)½(r '2 -- r 2) (r' > c), (12) 

and a corresponding expression for g.(r'). 
Once the Fourier coefficients f .  and g. are known, the summation in (7) may be performed 

to give 

1 ,2 2 "  : 2 n :  c AUz(r,O)rdrdO 
Auz(r',O')=-~-(r - c  )~Jo Jo (c2_r2)½[r,2+r2_2rr, cos(O_O,)] ( r '>c) ,  (13) 

which is an integral formula expressing the displacement discontinuity Au,(r', 0') in the 
outer region r' > c in terms of its values in the region r' < c. Recalling that Au z is related to 
the boundary value of the normal displacement for the contact problem by the equation 
Au~(r, 0) = 2uz(r, 0, 0), we see that equations (3) and (13) determine the normal displace- 
ment on the boundary z = 0 completely in terms of prescribed data. 

The Fourier coefficients of the normal stress component can be found by substituting the 
solutions for f.(r) and #.(r) into the integral representations (9) and (10). After some 
manipulation and integration we obtain 

d, f~  t 1-2" d ~o r"+lf,(r ) P"(r')=4r'"-1~Tr' (t 2 - r ' 2 )  ~ at ~ r ~  ~ drdt (r' < c). (14) 

A similar expression is obtained relating Q,(r') to #,(r). By substituting these results into 
equation (6), the normal traction under the punch can be found. 

Combining equations (2) and (6), we find that the total force on the punch is given by 

P = ~zrl. f l  P°(r)rdr" 
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From equation (14) with n = 0 therefore we obtain that 

P = -4rl, (~-r~-~  rdrdO. (15) 

Should the indenting force P be specified, the penetration depth, U o, may be found by 
substituting (3) into (15) and solving for U o. This gives 

~2n ~c U(r, O) 
U o = - (P/16n~/,c) - (2he)- 1 - - -  rdrdO. 

dO dO ( c2 --  r2)  ½ 

Appendix 

The technique of solution of the integral equations which arise by combining equations (9), 
(10), (6) and the boundary condition (12) is similar to that used in [3]. Consider the 
equation 

1 r dr  L,(r, r')dr = - --~z P"( )H(c - r'), (A1) 

where H(c - r') is the Heaviside function. Now it has been shown [2, 3] that L.(r, r') has the 
integral representation 

L.(r, r') = - 2 f o  J" + 1 (r~)J.(r'~)~d~. (A2) 

Taking into account (A2), we notice that (A1) is a Hankel transform over r' which may be 
inverted to give 

d f . ( r )  J , r . , d r  = 1 f o r " + l ~ r [ - ~ - I  .+l~g) ~-;P.(r)J . (r~)rdr.  

The left-hand side is now integrated by parts; since f,(r) is known for r < c we write the 
result in the form 

~ fl rfn(r)Jn(r~)dr + ~ ff° rfn(r)Jn(r() d r = - -  if P.(r)J,(r()rdr. 
2z~ o 

Multiplying both sides by ~-½J,+~(~t), t > c and integrating over ~ from 0 to ~ we 
obtain 

_ 2~1 F(nF(n+½) f~ 1) 
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We next multiply both sides by t(p 2 - t2) -½ and integrate over t from c to p: 

t 

1 F(n + ½) fl  - 2~z F(n + 1) (p2 _ c2)½ p,(r)rn+ t dr. 

Finally, differentiating with respect to p we obtain 

( 2 )½ pnf,(p) = -- (p2 -- c2) -½ 

~. F(n + ~_)_ f '+ l f . ( r )dr~  
x [ 2.rr(n + l) fl P.(r)r"+ldr + (~)½ fi ~--r~-~ J 

tdt 

We require the Fourier coefficients of displacement discontinuity to be bounded at p = c. In 
order that this be true we must have that 

f , n +  ½) f£ p.(r)r~+ 1 d r = _  ( 2 ~ '  I c ,"+lf.(r)dr 
2gz~F(n+ 1) \ r e /  Jo ~ - ~ r - ~ "  

Then finally. 

- -  _ _ p - n  

L ( P )  - r~ ( t  2 - r 2 )  ~ ( p  ~ - t 2 )  ½ " 

The t-integration may be performed to give 

f.(p) = 2 p - . ( p 2  _ c2)½ f l  r"+ ~f.(r) dr 
(c ~ ~ ~ -  r~) " 
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